Tìm n thuộc z để -n^2 + 3n -7 chia hết cho n+2

Tìm n để -n2 + 3n -7 chia hết cho n+2.

Giải:

Ta có: -n2 + 3n – 7 = -n.(n + 2) + 5n – 7 = -n(n + 2) + 5.(n + 2) -17

Để -n2 + 3n -7 chia hết cho n+2 thì 17 ⋮ n + 2

=> n + 2 ∈ Ư(17) = {-17; -1; 1; 17}

=> n ∈ {-19; -3; -1; 15}.

Kết luận: n ∈ {-19; -3; -1; 15}.

Cơ sở lý thuyết.

Đây là một bài toán nằm trong chươg trình Toán lớp 6. Đây là dạng bài toán chứng minh chia hết dưới dạng ẩn số. Dạng toán này thường nằm trong các bộ đề ôn thi bồi dưỡng học sinh giỏi.

Ngoài ra, đây cũng là câu hỏi để đánh giá năng lực của học sinh và chiếm phần điểm khó nhất trong đề thi học kì Toán lớp 6. Nếu như chứng minh chia hết cho một số, các bạn chỉ cần biết dấu hiệu chia hết của một số và tách biểu thức cần chứng minh chia hết, sau đó tìm ẩn của biểu thức. Nhưng để chứng minh biểu thức chia hết cho biểu thức thì sẽ khó hơn. Sau đây tôi sẽ nêu các làm làm, các bạn có thể tham khảo:

  • Cách 1. Đặt chia biểu thức và tìm ẩn của biểu thức sao cho thoả mãn yêu cầu đề bài.
  • Cách 2: Tác các biểu thức và rút gọn. Sau đó xét các trường hợp để tìm ẩn thoả mãn yêu cầu đề bài
Có thể bạn quan tâm:  Với cùng 4 chữ số 2;5;6;7 viết tất cả các số: a) chia hết cho 4 ; 8; 25; 125

Khi đọc về lí thuyết, có thể các bạn sẽ khó hiểu. Để hiểu thêm về cách giải các bài toán này, các bạn hãy tham khảo ví dụ bên dưới.

Bài tập ví dụ.

Tìm số nguyên m để giá trị của biểu thức A chia hết cho giá trị của biểu thức B:

A= m3 +2m2 -3m+2 ,    B= m2 – m

Bài giải.

Đặt chia A cho B ta được thương là  m + 3  và được số dư là 2.

Để biểu thức A chia hết cho B thì ta có 2 phải chia hết cho B.

Do đó ta có -2 ≤ B≤ 2

Mà B = m2 – m = m(m-1)

Xét các TH:

TH1: B = -2 <=> m2 – m = -2 <=> m2 – m + 2 = 0 (vô nghiệm)

TH2: B = -1 <=> m2 – m = -1 <=> m2 – m + 1 = 0 (vô nghiệm)

TH3: B = 1 <=> m2 – m = 1 <=> m2 – m  – 1 = 0

Phương trình trên không có nghiệm là số nguyên => Loại

TH4: B = 2 <=> m2 – m = 2 <=> m2 – m –  2 = 0

Suy ra m= -1 hoặc m = 2.

Vậy với m = -1 hoặc m = 2 thì thoả mãn yêu cầu đề bài.

Thu Hoài

Tải tài liệu miễn phí ở đây

Để lại Lời nhắn