Hỏi: Cho p và p+2 là số nguyên tố (p>3). CMR: p+1 chia hết cho 6.
Trả lời:
Cách 1:
p là số nguyên tố, p>3 => p không chia hết cho 3 (1)
p+2 là số nguyên tố, p+2>5>3 => p+2 không chia hết cho 3 (2)
Ta có: p(p+1)(p+2) là tích 3 số tự nhiên liên tiếp => p(p+1)(p+2) chia hết cho 3 (3)
Từ (1),(2),(3) => p+1 chia hết cho 3 (*)
Ta lại có: p là số nguyên tố, p>3 => p lẻ => p+1 chẵn => p+1 chia hết cho 2 (**)
Mà (2;3)=1 (***)
Từ (*),(**),(***) => p+1 chia hết cho 6.
Cách 2:
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).
=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.
Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.
ử
sai ồi
nguyễn ngọc thảo vy
CMR là gì dợ
boy?
CMR la chung minh rang do !!!
boy?
dung ma
lol
minh cung nghi the
haha lol boy
um , ban giong mik qua
Bùi Minh Sáu
Hình như là sai rồi thì phải