Có tất cả bao nhiêu số tự nhiên có 4 chữ số mà tổng các chữ số của mỗi số là 4?

Câu hỏi: Có tất cả bao nhiêu số tự nhiên có 4 chữ số mà tổng các chữ số của mỗi số là 4?

Trả lời:

Ta có các tổ hợp 4 số có tổng bằng 4 là: (1, 1, 1, 1),  (0, 1, 2, 1), (0, 2, 2, 0),  (0, 1, 3, 0), (4, 0, 0, 0). Từ tổ hợp số này, ta lập được các số sau:

  • (1, 1, 1, 1) = 1111
  • (0, 1, 2, 1) = 1021, 1012, 2011, 2101, 2110, 1120, 1102, 1201, 1210.
  • (0, 2, 2, 0) = 2200, 2020, 2002
  • (0, 1, 3, 0) = 1003, 1030, 1300, 3100, 3010, 3001
  • (4, 0, 0, 0) = 4000

Như vậy, tổng tất cả có 20 chữ số có 4 chữ số mà tổng các chữ số của mỗi số là 4.

Cơ sở lý thuyết và kinh nghiệm làm toán tìm số tự nhiên có 4 chữ số.

Đây là dạng bài tập liệt kê các số thỏa mãn điều kiện bài cho. Đây là dạng bài không khó nhưng nó yêu cầu độ tỉ mỉ và suy xét đầy đủ. Phương pháp làm dạng bài này rất đơn giản. Trước hết tìm các chữ số thỏa mãn yêu cầu của bài. Sau đó là sắp xếp các chữ số đó thành các phần tử số tự nhiên thỏa mãn. Có một mẹo hay để không bỏ sót số.

Có thể bạn quan tâm:  Tính: A = 1.99^2 + 2.98^2 + 3.97^2 + … + 49.51^2

Ví dụ khi sắp xếp nhóm (1, 2, 3, 4) thành các số tự nhiên. Trước hết bạn sẽ lấy từng số làm hàng nghin. Ví dụ tôi lấy số 1 làm hàng nghìn. Sau đó chọn số hàng trăm. Đầu tiên tôi chọn số 2 làm hàng trăm thì có số 1234, 1243. Tiếp tục lấy số 3 làm hàng trăm thì có 1342, 1324. Và lấy số 4 làm hàng trăm thì có các số 1423, 1432. Như vậy, với số 1 làm hàng nghìn thì ta có 6 số. Tương tự sau đó lấy 2, 3, 4 làm hàng nghìn. Hãy thực hành phương pháp này. Chắc chắn bạn sẽ không bỏ lỡ bất kì số nào đâu.

Bài tập vận dụng

Bài 1. Viết tất cả các số có 4 chữ số mà chữ số hàng nghìn gấp đôi chữ số hàng đơn vị

Bài 2. Có tất cả bao nhiêu số có 3 chữ số mà tổng 3 chữ số bằng 9

Tài liệu tiếp tục được cập nhật

Tải tài liệu miễn phí ở đây

Sưu tầm: Trần Thị Nhung

7 Bình luận

  1. Khách
  2. Khách
  3. Khách
  4. Phương An
  5. vy
  6. Khách
  7. Khách

Để lại Lời nhắn