Bài tập nâng cao Toán 7 học kì 2 – Phần Đại số
Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.
Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.
Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.
Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.
Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:
- Dương với mọi x, y khác 0.
- Âm với mọi x, y khác 0.
Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.
Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.
Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.
Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.
Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.
Bài 10:
Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.
Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.
Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.
Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.
Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.
Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.
Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.
Chúc các em học tập tốt 🙂
Nâng cao Toán 7 – những điều cần biết
Trên đây là một số bài tập tính giá trị biểu thức trong chương trình toán 7 nâng cao. Để hỗ trợ kiến thức cho học sinh. Bên cạnh chương trình trong sách giáo khoa. Học sinh nên làm quen với các dạng nâng cao. Giúp ích rất nhiều trong quá trình học tập, đạt kết quả cao trong các kỳ thi.
Không hẳn kiến thức trong chương trình nâng cao là khó nhằn. Bài tập được thiết kế từ mức độ thấp đến cao. Khơi dậy ý thức học tập cho mọi đối tượng người học.
Trường
Cho đáp án nữa