Chuyên đề phân tích đa thức thành nhân tử nâng cao

Các phương pháp phân tích cơ bản

Trong chương trình trung học cơ sở, học sinh được học các biểu thức được gọi là đa thức ở chương trình Toán 8. Trong đó chuyên đề phân tích đa thức thành nhân tử nâng cao và cơ bản có những nét riêng biệt. Trước hết chúng ta đi và phần cơ bản.

Thông báo:  Giáo án, tài liệu miễn phí, và các giải đáp sự cố khi dạy online có tại Nhóm giáo viên 4.0 mọi người tham gia để tải tài liệu, giáo án, và kinh nghiệm giáo dục nhé!

 

Đa thức là biểu thức có chứa nhiều hạng tử, là tập hợp của nhiều đơn thức. Ví dụ: 2x2 + 3x -5, 4x + 1,… Đa thức liên quan đến nhiều dạng toán quan trọng như: giải phương trình bậc hai, bậc cao,…

Phân tích đa thức thành nhân tử cơ bản bao gồm có 3 phương pháp:

  • Phương pháp 1: Đặt nhân tử chung
  • Phương pháp 2: Hằng đẳng thức
  • Phương pháp 3: Nhóm hạng tử

Đây 3 cách cơ bản để có thể đưa một đa thức thành tích của các biểu thức.

phân tích đa thức thành nhân tử nâng cao

Các phương pháp phân tích nâng cao

Với các phương pháp phân tích đa thức thành nhân tử nâng cao, học sinh sẽ được học nhiều phương pháp mới. Và dĩ nhiên yêu cầu vận dụng của những phương pháp này cũng cao hơn nhiều.

Có thể bạn quan tâm:  Toán thực tế lớp 8 - Tổng hợp những bài toán lạ vừa sức

Thứ nhất là phương pháp tách hạng tử. Tức là tách đa thức thành tích của hai biểu thức đơn giản hơn. Bằng cách tách các hạng tử phù hợp để tạo thành nhân tử chung. Thứ hai là phương pháp thêm bớt. Đó là tìm một biểu thức thích hợp và thêm bớt vào bài toán. Có thể thêm bớt để tạo thành bình phương. Một cách khác là thêm bớt để tạo thành nhân tử chung.

Ngoài ra còn có phương pháp hệ số bất định và phương pháp đổi biến. Để biết rõ hơn về các phương pháp này, cũng như làm các bài tập vận dụng tương ứng các bạn hãy tải bộ tài liệu của chúng tôi về nhé.

Bài tập phân tích đa thức sử dụng phương pháp cơ bản

Ví dụ 1: Phân tích những đa thức sau:

a) 15a2b2 – 12a3b + 3ab2

b) 2x(y-z) + 5y(z-y)

c) xm+3 + xm (x3 + 1)

Lời giải:

a) 15a2b2 – 12a3b + 3ab2 = 3ab(5ab – 4a2 +3b)

b) 2x(y-z) + 5y(z-y)

= 2x(y-z) – 5y(y-z)

= (y-z)(2x-5y)

c) xm+3 + xm (x3 + 1) = xm. x3  +  xm (x3 + 1)

= xm (x3 + x3 + 1)

= xm (2x3 + 1)

Ví dụ 2:  Phân tích những đa thức sau:

a) 25x2 – 9

b) 8 – 27a3b6

c) 36x4  – 12x2y + y2

Lời giải:

a) 25x2 – 9 = (5x)2 – 32 = (5x -3)(5x + 3)

b) 8 – 27a3b6  = 23 – (3ab2)3 = (2-3ab2)(4 – 6ab2 + 9a2b4)

c) 36x4  – 12x2y + y2 = (6x2)2 – 2.6x2.y + y2 = (6x2 – y)2

Trên đây là 2 ví dụ về phân tích đa thức thành các tích thông qua các phương pháp như đặt nhân tử chung, hằng đẳng thức, … Có thể nói đây là phần chuyên đề cơ bản cho rất nhiều kiến thức sau nay như giải phương trình, phương trình đường thẳng, …

Có thể bạn quan tâm:  Hình chóp đều, hình chóp cụt đều, diện tích xq và thể tích khối chóp

Những lưu ý khi làm bài phân tích đa thức

Như chúng tôi đã nói, đây là chuyên đề rất quan trọng trong chương trình Toán 8. Do đó, học sinh cần phải cẩn thận khi làm bài. Đặc biệt, các bạn hãy cố gắng tránh mắc những sai lầm sau đây:

  • Tìm điều kiện xác định cho đa thức(nếu có)
  • Một đa thức có thể sử dụng nhiều phương pháp để phân tích
  • Sau khi phân tích xong nên thử nhân bung ra để kiểm tra lại kết quả
  • Cẩn thận khi làm toán với số mũ – lũy thừa
  • Nên làm nhiều bài tập để làm quen với các phương pháp của chuyên đề phân tích đa thức thành nhân tử
  • Có thể phối hợp nhiều phương pháp trong một bài toán
  • Trong nhiều trường hợp, sau khi phân tích đa thức chưa chắc đã ngắn gọn hơn so với đa thức ban đầu.
Tải tài liệu miễn phí ở đây

Sưu tầm: Trần Thị Nhung 

Một bình luận

  1. Khách

Để lại Lời nhắn